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SUMMARY

Critical needs currently exist for a fully retargetable
microcode compiler and for an effective development tool to
support programming for the new non-von Neuman architecture
microprocessors. As more parallel processors, systolic
arrays, and cascadable processors become available, these

*-. needs can only become more acute. Most of the chips resulting
from the VHSIC program and all near-term gallium arsenide
devices will require microcoding. For the benefits of these
advances to be fully realized, microcode development will
have to be automated in the relatively near future.

This report describes the microcode compiler feasibility
study and the compiler development undertaken at PENGUIN
SOFTWARE,Inc. under the first phase of contract
DAADlB-86-C-0008 sponsored by White Sands Missile Range.

The microcode compiler being developed at PENGUIN Software,
Inc. is based on the concept of a retargetable compiler. This
approach does not have a fixed machine-independent language,
but allows the user to develop a language specific to each
particular target machine. This provides a means for the user
to incorporate knowledge of target machine design into the
language definition, and avoids the necessity for resource
allocation or code compaction in the application program.

U This microcode compiler is a new type of program. According

to one source, this approach has never been tried before; at
least no other retargetable microcode compiler exists. The
advantages of this approach appear to be:

1. Low Risk : there are no high risk algorithms
remaining to be developed.

2. Robustness : This compiler can support any
processor architecture suported by the current

.V ~state-of-the-art meta-assemblers.

3. Speed : This compiler is competitive with
meta-assemblers in terms of speed. This is in sharp
contrast to other microcompiler designs.

4. Timeliness : this approach can be developed
into a working tool quickly.

~,'(.Currently, PENGUIN Software, Inc. is involved in a continuing
development effort to produce a commercially marketable
microcompiler which is capable of supporting the development
of microcode for cascadable, parallel, and systolic arrays ofw microprocessors.

.1 - iii



P REFACE

Previous microcode compilers have evolved from traditional
compiler concepts and design methodologies. They have adopted
an approach involving machine-independent languages and have
attempted to capitalize on the associated advantages. In

*order for this to be successful, it is necessary to develop
algorithms capable of producing compact microcode. This
approach invariably gets bogged down in the problems
associated with microcode compaction and resource allocation.
Until these problems are solved, this approach has to be
considered very high risk.

In contrast, the microcompiler being designed at PENGUIN
SOFTWARE, Inc. has evolved from the classic microprogramming
tool i.e. the meta-assembler. Our microcompiler starts out
with an underlying meta-assembler and builds up a higher
level language capability around it. This approach results in

V a microcode development tool which is a very low risk, and is
capable of supporting virtually any digital hardware

V architecture.

While there are very few research journal articles related to
our work, we have not been forced to work in a vacuum. We
would like to thank the marketing staff at HILEVEL Technology
in Irvine,and we would especially like to thank Mr. Warren
Long, Product Marketing Manager at HILEVEL, for his many
suggestions in the areas of requirements and engineering
design. We would also like to thank the engineers and
managers of Rockwell International, Hughes, Northrop, and TRW
that have contributed their time and allowed themselves to be
interviewed.
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1.0 INTRODUCTION

The microcode compiler being developed at PENGUIN SOFTWARE,
Inc. is a retargetable compiler. This compiler does not have
a fixed machine-independent language, but allows the user to
develop a language specific to each particular target
machine.

The microcode compiler is a two stage translation scheme. The
first stage provides a fixed high level design language to
permit the easy definition of the machine-dependent high
level language. The language definition compiler, called the
Syntax Compiler, produces syntax files which define both thejsyntax and semantics of the target machine language.
The application program is compiled by the MICROCOMPILER to
produce the object file microcode. The application programs
are written in a language specifically designed for the
particular target processor. This language is almost
completely free from constraints with just enough underlying
language structure to facilitate the application language
compilation process.

One of the crucial issues decided by this PHASE I study was
.1 "the speed of the microcompiler. Because of the complexity of

the algorithms being used, a great deal of effort was focused
on enhancing the speed of the microcompiler. This microcode
compiler has been designed to run very fast by using our own
in-house developed data structures and algorithms, and using
"inverted" syntax files.

The approach to automated microcode generation being
developed at PENGUIN SOFTWARE,Inc. is based on the concept of
machine-dependent languages. This provides a means for the
user to incorporate knowledge of target machine design into
the language definition. There are some obvious advantages

* and disadvantages to this approach.

Some of the advantages of this approach are expressiveness,
robustness, and low risk.

. ;a. This approach allows the programmer to design a.

machine-dependent language tailored to the needs of a
particular application. This can result in a highly
expressive and efficient language.

b. Because of this microcompiler's relationship to
meta-assemblers, this microcompiler is extremelyunlikelv to fail due to a particular target machine

design.

0z ... 1



c. Finally, this approach avoids the tough problems of
microcode compaction and resource allocation.

Some of the disadvantages of this approach are lack of a
stable application language, and the difficulties associated
with trying to imbed low level hardware details in a high
level language.

a. A stable application language is desireable because
it makes application programs more transportable and
facilitates the development of microcode simulators.

b. Because of the hardware design, it may be difficult
to design a suitable high-level language for a
particular application.

The basic requirement of our Phase I effort was to
demonstrate the feasibility of PENGUIN SOFTWARE's approach
microcode development. Section 3.0 describes, in some detail,
the research and development efforts expended at PENGUIN
SOFTWARE to meet this requirement. Under the current
contract, the following tasks were completed at PENGUIN
SOFTWARE, Inc.

a. Define the Machine-Dependent Languages.

Specify the general class of statements to be supported
by our microcompiler. This specification is to be based
on a literature search, interviews with managers and
engineers from the microprogramming community, and the
flexibility of the existing LR(n) compiler. (See
Appendix A.)

b. Define Syntax Definition Language.

Specify the general class of statements to be supported
by the syntax compiler. This specification is to be
based on the design of the existing compilers, the
requirements generated for the application languages,
and the flexibility of the existing LR(l) compiler. (See
Appendix A.)

c. Generate Test Cases.

Generate typical application program statements and test
programs to be used to evaluate the expressiveness of
the proposed languages. (See Appendix B.)

d. Generate Microcompiler and Syntax Compiler Design
Requirements.

2
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4'- *Generate design requirements including identifying
* reserved characters, parameter sizing, input/output and

listing formats. (See Appendix C.)

e. Design Syntax Compiler modifications.

Generate PDL (Program Design Language) descriptions of
changes to be made to the syntax compiler. (See Appendix
D.)

f. Add Diagostic Function.

Insert a diagnostic capability into the syntax compiler
in order to help debugging the syntax source files.

g. Add Syntax File Inversion.

The files which define the application language syntax
will be inverted to facillitate the process of parsing

V ... *the application program statements.

h. Design Microcompiler Modifications.

Generate PDL (Program Design Language) descriptions of
changes to be made to the microcompiler. (See Appendix
D.)

Ii. Perform Timing Studies.

- -Perform a timing study of the syntax definiton phase and
the microcompiler phase.

Section 4.0 describes the status of the technical objectives.
This includes the extent to which the language structure was
finalized. The optimization of the data structures was
completed with the result that the microcompiler is now much
faster than predicted. The construction of the prototype

.' compilers was concluded without surfacing any difficult
problems. Finally, the completiion of the prototypes allowed
us to perform the necessary timing study.

" - Section 5.0 gives a summary of conclusions and
recommendations. We conclude that all technical objectives
were attained. The results of the timing study show that the
microcompiler is quite fast enough. Although this general
approach is new, it appears to be the low risk approach now
that all of the difficult algorithms have been demonstrated
in our prototype. Finally, we conclude that this approach has

Athe added benefit of being very robust in the sense that it
is very unlikely that any future design will cause the
microcompiler to fail.

.- ~ 3



2.0 MICROCODE COMPILER STUDY

PENGUIN SOFTWARE's retargetable microcode generator systemn
emulates a wide range of computer architectures. By allowing
the user to define a machine-dependent high-level language,
and then write an application program in this new language,
the microcode generator is able to translate the application
program into efficient horizontal microcode.

Our minimum goal was to produce a working microcode compiler
which would be a useful tool in industry. In order to achieve
this goal, we determined to start with the most powerful
meta-assembler that we could define and then enhance its
capabilities to achieve a higher-level language capability.
In retrospect it makes sense that many of the project tasks
are divided into two parts. The first part, the syntactic
analysis, determines which statements the microcompiler will
accept as valid, and determines the readability of the
language. The second part, the semantic action, determines to
a large extent the level of the language.

2.1 Define Machine-Dependent Languages.

Having proposed using machine-dependent languages, we now had
to decide if we would use a machine-independent language
(such as a subset of "C" or ISP) which could be augmented, or
just provide a minimal language structure.

Based on interviews with various engineers and managers in
the microprogramming community, we naturally found a
conflicting set of requirements. Although there was a lot of
support for using a subset of "C", there was also a lot of
negative feeling associated with the implied techinical
requirements associated with that decision. In the end, we
decided to opt for providing the minimal language structure,
and in light of the greater understanding we now have
concerning the project, we believe that this was definitely
the right choice.

Our literature search provided a list of candidate
meta-assembler capabilities for the micrcode compiler. These
meta-assembler-derived capabilities were reviewed to
determine which were inappropriate, which would be postponed,
and which would be implemented immediately. The results of
the study are summarized below.

2.1.1 Statement Notation.

Two types of statement notation were considered. The first
type, "action verb", is similiar to the standard assembly
language statement. Unfortunately, "action verb" does not

4
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seem compatible with the requirements of horizontal
microprogrammxing. The second type of statement notation,
"list notation", is ideal for horizontal microcoding. This
statement has the basic form shown in Fig. 1. We have adopted
the convention that all labels are immediately followed by a
colon, the entities are separated by semicolons, and the last
entity is followed by a period. Everything to the right of
the period is a comment.

2.1.2 Entity Notation.

The lowest level of entity notation identified is "positional
notation". In positional notation each entity is related to
one particular field. This notation does not appear to have
any role in our high-level language except possibly to force
specific values into a specific microword, and even then

~ ~. there seems to be better ways to accomplish that.

Several nonpositional entity notations were identified. These
include "function reference notation", "value mnemonic
notation", and "keyword notation". All of these notations are
desireable in different applications. Rather than decide on
anyone of them, a different notation has been selected which
includes all of the above: this is the "free notation". In
the free notation there are almost no constraints on the
notation used. The only constraints imposed on the entity
notation are those derived from the design requirements and
from the implementation of the program.

One of the advantages of using a high-level language is the

abiityto eneatemore than one line of object code for one
line of source code. This capability has been included in the
microcode compiler.

2.1.4 Structured Control Statements

Structured control statements allow the development of block
structured code and an orderly and controlled approach to
program control flow. Structured control is included as an
important part of the microcode compiler.

2.1.5 Phase II Features

The main objective of our Phase I study was to prove the
feasibility of our approach. Namely, to prove the feasibilty

* - -of a retargetable microcode compiler that runs on the IBM-AT
in a reasonable amount of time. Several features were

.* identified which, although desirable for a production quality
product, were judged to be non-essential for attaining our

* -: 5
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<label> <entity> <entity> ... <entity> <comment>

Figure 1. List Notation Format.

<label>: <clause>;<clause>; ... ;<clause>.<comment>

Figure 2. Compiler Sentence Format.

CLAUSE (<syntax definition>)[<semantic actions>)]

Figure 3. CLAUSE Definition Format.

'p
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Phase I objective. These features were postponed until Phase
Ii.

a. Compiler evaluation of arithmetic expressions.

The ability to evaluate arithmetic expressions is not
-~ r. ~relevant to the Phase I feasibility study.

b. Compile time MACRO definition.

The capability to generate MACRO's in the application program
is usually associated with assemblers rather than compilers.
Still, this capability might be valuable in the event that
the syntax compiler were too slow. (Considering the results
of the timing study, it now seems less likely that this MACRO

* capability will be included in Phase II-)

c. Conditional compilation.

Some form of conditional compilation is part of one possible
approach to handling cascadable microcprocessors in PHASE II.

d. Relocatable object code.
e. Linking of object modules.

These two capabilities are essential and will be included int PHASE II as a consequence of our approach based on using the
HILEVEL Technology meta-assembly language, HALE, as a

* intermediate language.

* *. 2.1.6 Beyond Phase II

The following features were identified as being too high riskr for inclusion in either Phase I or Phase II. They did,
however, cause a shift in design philosophy which will be
reflected in the Phase II design.

a. Microcode compaction.

N Although the need for microcode compaction has been almost
- entirely avoided by the use of machine-dependent languages,

it may be desirable to have a local compaction algorithm as
part of a compiler optimization phase.

b. Compiler-directed resource allocation.

Resource allocation is another capability which we might
eventually want to include in this compiler. Resource
allocation is a difficult task chiefly in a situation
involving global microcode compaction. By avoiding global
compaction, we will eventually be able to include some

r7
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resource allocation capability in this compiler.

2.2 Define Syntax Definition Language.

Because of the period and semicolons in the list notation, we
have adopted the terms "sentence" for the entire line from
the label to the end of the comnent, and the term Oclauseu

" for the entity as shown in Fig. 2. Since the structure of the
sentence is hard-wired into the microcode compiler, it
remains to the syntax compiler to define the syntax ana
semantics of the "clauses". A syntax compiler source file is
constructed using the language outlined below. This file will
define all of the legal application language clauses and
define what these clauses mean. The basic clause defintion
appears as shown in Fig. 3.

2.2.1 Syntax Defintion

The syntax definition process for each clause is accomplished
by using three related contructs: literal strings, lists, and
literals.

Literal strings are the simplest and in some cases the most
efficient means for defining the syntax of a clause. A
literal string is string of alphabetic or special characters
enclosed in double quotes. Numerical digits can also be
included, but they must be proceeded by an alphabetic
character. Ignoring the semantic definitions for the moment,
the examples as shown in Fig. 4 show clauses defined using
the literal string.

Literal strings are useful for clauses, such as ONOP"
which are, in a sense, one-of-a-kind. Literal strings are not
very useful in situations like OREGl - REGI2" where there
are several registers that may appear on either side of the

equation such as shown in Fig. 5. This situation is handled
by the two types of lists described below.

First, the LIST is identified by a list name,then the LIST is
defined by a list of tokens and associated semantics actions.
Fig. 6 is a simple example of a LIST structure. A LIST is
used in a CLAUSE definiton simply by using the LIST name.
Using a LIST in a CLAUSE definition can considerably reduce
the amount of effort required as can be seen by the example
in Fig. 7. In this example, we have a very simple situation
where the contents of any source register can be moved into
any destination register. Experience has shown that quite
often these LIST's will be used repeatedly to define other
CLAUSE's. This results in a tremendous saving of programming
effort.

8
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CLAUSE i "NoP"

CLAUSE I "REGI REGl2"

CLAUSE "REPEAT(FOREVER)"

Figure 4. Example: Literal String Definitions.

CLUS .- G1-REI

bCLAUSE i."RIEGlF REGI"
CLAUSE I"REG2 REGi"
CLAUSE * REG3 REGi"

A , - '

CLAUSE I"REGIF REG2"
CLAUSE I"REGI REG3"

9 q -"

,. CLAUSE I "REG2 = REG3"}

CLAUSE I REGIF = REGIF"
'I-

Figure 5. Example: When Not to Use Literal Strings.

999..
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LIST 'list name> = {
(token-l)[semantic action]:
<token-2>[semantic action];

<token-n)[semantic action];

Figure 6. LIST Definition Format.

CLAUSE REGD -" REGS I

LIST REGD = I
REGl[semantic action];
REG2(s.mantic action];
REG3[semantic action];

REGIFtsemantic action]

LIST REGS - I
REGI[semantic action];

* REG2[semantic action];
* REG3[semantic action];

REGlF[semantic action]

Figure 7. Example: Using LIST Definition.

4 0



Occasionally, we have a situation, unlike the preceeding
example, where the source and destination registers are not
orthogonal. This means, in this case, that only certainhI source registers can be used with certain corresponding
destination registers. The result is that simple LIST's would
no longer work efficiently. Now we could fall back on the

" literal strings discussed before and define several CLAUSE's
as shown in Fig. 8. We have adopted an approach using
dimensioned LIST's. Dimensioned LIST's have the particular
property that if more than one column of the LIST is used in
a CLAUSE definition, then the tokens must all come from the
same row. The definition of a dimensioned LIST is shown in
Fig. 9. A dimensioned list is used to solve the CLAUSE
definition problem discussed above as shown in Fig. 10.

.1*•

The final construct is the LITERAL. LITERAL's are used to
define the processing of numbers and statement labels. The
LITERAL is defined as shown in Fig. 11 and is used in a
clause as shown in Fig. 12. The LITERAL allows the
application programmer to include values in the program at
compile time.

2.2.2 Semantics Defintion

The semantics of a particular statement is defined in terms
of the semantic actions to be performed when that statement
is encountered in an application program. For each
application program statement, the microcompiler must
reconstruct the statement defintion to determine the
particular CLAUSE, LIST row, and LITERAL as appropriate.
These semantic actions are associated with the CLAUSE's, rows
of the ',IST's, and the LITERAL's.

Some semantic actions only make sense in association with
certain constructs, while others have only been implemented
for other constructs. This is shown in Fig. 13.

The semantic actions implemented during PHASE I are described
be low:

a. field value: a value is inserted into a field in the
object file.

b. PPA: an address is popped off an internal compiler
stack. A label is generated and associated with the value
)ust popped off the stack.

C. PHA: the currect microaddresb counter is pushed onto

an internal --ompiler stack.

d. "PL: a label is popped off an internal compiler stack

101



CLAUSE t 'REGI = REG5"
CLAUSE ("REGI = REG7"
CLAUSE ("REG2 = &%Gl"
CLAUSE ( "REG3 = REG5" }

CLAUSE f "REFIF - REGl2" I

Figure 8. Example: When Not to Use Simple LIST's.

LIST <list name>(dim-ldim-2,...,dim-m) {
<token-ll,token-12,...,token-lm>[semantic action];
<token-21,token-22,...,token-2m>[semantic action];

<token-nl,token-n2,...,token-nm,[semantic action];

Figure 9. Dimensioned LIST Definition Format.

CLAUSE ( REGS(l) N-" REGS(2) I

LIST REGS(l,2) = I
REGiREG5[semantic action];
REG1,REG7(semantic action];
REG2,REGI[semantic action];
REG3,REG5[semantic action];

*REFIF,REGl2[semantic action]

Figure 10. Example: Using Dimensioned LIST.

12
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LITERAL((literal number>) [ semantic action]

Figure 11. LITERAL Definition Format.
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CLAUSE LIST LITERAL

field value yes yes yes

*PPA yes no no
PHA yes no no
PPL yes no no
PHL yes no no
SWP yes no no
LBL yes no no

LIT no no yes
ROR(n) no no yes

Figure 13. Mapping Semantic Actions to Constructs.
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and associated with the current value of the microaddress

counter.

e. PHL: a label is created and pushed onto an internal
compiler stack.

f. SWP: the top two entries on an internal compiler stack
are swapped.

g. LBL: causes the compiler to generate a label and
S,.retrieve the value associated with this label. This value is

processed as a literal (see LIT below).

h. LIT: a literal value is right justified, and zero
filled as required. The result is then inserted into a field
in the object file.

i. ROR(n): a literal number is conditioned as with LIT
'. above then rotated n bits. The result is then inserted into a

field in the object file.

2.3 Generate Test Cases.

Test cases were generated to satisfy three requirements: to
debug the program; to perform the compiler timing studies;
and to demonstrate the capabilities of the microcompiler.

The debugging effort was automated as much as possible to
encourage and facilitate frequent testing. Both a test
file(or files) and an answer file were created. DOS commands
were then issued from a ".BAT" file to automatically run a
test case and verify the results.

L Test files were constructed for use in the timing studies.
The Syntax compiler was timed with one large and one small
test case, while the microcompiler was timed with a large, a
medium, and a small test case for each of the syntax compiler
output files. As it turned out both compilers were much
faster than predicted, and both compilers could have been
adequately characterized by a single large test case.

".' The third type of test case was designed to demonstrate the
expressive power of the languages that could be supported by
the microcompiler. No effort was made to create either a
realistic language, or a complete one. But all of the
different semantic actions supported by the microcompiler are
exercised, and all of the supported statement types are

! :included.
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2.4 Generate Design Requirements.

In addition to implementing the syntax and semantics of the
microcompiler, and the syntax compiler languages, several
implementation-specific requirements had to be defined. These
were associated with reserved characters, parameter sizing,
and input/output.

2.4.1 Reserving Special Characters

After identifing certain characters to be used in the
application language syntax, and others to be used in the
syntax definition language, the remaining characters were
left for inclusion in the application language itself. These
remaining characters could be treated in at least two ways.
First, each special character could be treated as a separate
token. Thus, expressions like

REGA = REGB.

would be treated identically to

REGA=REGB.

where the spaces have been deleted. The second approach would

be to treat special characters the same as alphabetic
characters, and thus allow them to be embedded inside a
token. This is commonly the cases with the underscore and is
used as an embedded blank as in the following:

REGA = REGB.

We decided to treat all special characters as tokens for
Phase I. Phase II will start treating various special
characters in different ways.

2.4.2 Sizing Parameters

Designing software involves a certain amount of defining data
structures. The microword is an example of a data structure
that has to be sized. During the microcompiler processing a

-" -microword is built up by first setting it equal to a default
value. Then various fields of the microword are modified as
specified by the commanded semantic actions. One obvious
question is "How wide should this microword be?".

There are at least three possible answers to this question.
IFirst, a dynamic resource allocation scheme could be used.

This approach would involve requesting RAM allocation as
required from the operating system during run time. With this
approach there would be no need to know the size of the
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problem in advance, and no limit on problem size would be
imposed by the software. The hardware would limit problem
size. In the event that the software required more RAM than
was available, then the user could simply add more RAM space
to the system.

The second approach simply sets a "hard-wired" limit into the
software. This approach is especially appropriate when there
is a simple work-around which allows the limits to be
essentially exceeded. For example, the maximum size of a
field might be set at sixteen bits. Thirty two(or more) bits
are easily achieved by breaking a large field up into several
smaller fields.

The third approach is sort of a combination of the preceeding
two. A substantial block of RAM space is reserved in the
software. This RAM is then allocated according to the values
of certain parameters input as part of the application
program. For example, the microword width could be specified
in the application program, and sufficient RAM allocated as
required.

During Phase I, we have used the last two approaches. These
were essentially inherited from the previous design. The

- dynamic resource allocation scheme has some tremendous
advantages, but represents a much more difficult programming
task. The dynamic resource allocation scheme has been
postponed and proposed for Phase II.

2.4.3 Input/Output

The input and output interfaces were designed to be
compatible with the existing software, and as simple as

*possible. No attempt was made to provide a realistic operator
interface, because the operator interface was considered to
be irrelevant to the Phase I technical objectives.

2.5 Design Syntax Compiler Mods.

An existing LR(l) compiler was modified to provide the syntax
compiler needed for our study.

2.6 Add Diagostic Function.

A diagnostic capability was added in order to help debug the
syntax compiler test cases. Since the syntax compiler was
LR(l), one token look ahead, there was very little difficulty
anticipating the next token and flagging an error if the
token was not supplied. In the event of an error, an attempt
was made to identify the missing token and to indicate on the
listing where it was expected. Occasionally, a neighboring
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location was mistakenly identified, but it was sufficiently
accurate and reliable in order to enable rapid debugging of
the larger test cases.

2.7 Add Syntax File Inversion.

The syntax compiler produced two types of files: syntax and
semantic. The syntax files identify the various acceptable
clauses, while the semantic files describe what semantic
actions to take when each clause is encountered. Thus the
microcompiler engages in a two step process. First a clause
is read and identified, and next the appropriate semantic
actions are taken. When the semantic actions are defined,
they are built up into files which are in the most efficient
form for use by the microcompiler. This is not the same for
the syntax files.

When the syntax files are defined in the syntax compiler,
they are defined in some sense from the top down. The general
forms of the clauses are defined, and then the particulars of
the tokens are supplied later. The microcompiler, on the
other hand, encounters the individual tokens first, and then
must work its way back to identify the basic clause. In this
sense, the syntax files need to be inverted in order for the
microcompiler to run most efficiently.

The inversion process used consisted of first expanding the
packed data structures into arrays. These arrays were
arranged with what was originally the independent variables
in the first columns and the dependent variables in the last
columns. These arrays were then inverted using a "quick
sort", and the old dependent variables became the new
independent variables, etc. The resulting "inverted" arrays
were then packed into the original data strucures to be used
by the microcompiler.

As a final step, the syntax and semantics files were all

- packed together, and saved in a disk file. This avoids the
necessity of running the syntax compiler everytime we run the
microcompiler. It did, however, increase the complexity of
the data being passed to the microcompiler (and resulted,
temporarily, in considerable confusion).

Because of the complexity of these inverted data strictures,
it was difficult to verify their accuracy. This 

was

accomplished by two methods. First, the data structures were
printed out before they were packed into the disk file by the
syntax compiler, and printed out after they were unpacked by
the microcompiler. Second, small cases were inverted and
packed by hand, and verified against the results of a syntax
compiler run.
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2.8 Design Microcompiler Mods.

An existing LR(n) compiler was modified to study the
microcompiler requirements. We are using the term LR(n) to
mean a compiler that can perform up to an "n" token
look-ahead before parsing a particular sentence. This
parameter "n" is determined when the "C" source program for
the Syntax Compiler and Microcompiler are themselves
compiled.

2.9 Perform Timing Study.

Our intention for the timing study was to perform a
parametric analysis which could possibly lead to some speed
enhancing design changes. Our concerns were that the
algorithm's complexity combined with a long test case would
result in unacceptable run times. We were also expecting a
non-linear effect in the microcompiler run times to cause

. problems for larger test cases and to limit future
applications. Both of these concerns were unfounded.

The Syntax Compiler requires only nine seconds for the
largest test case that we ran. This test case was based on a
large real world language which includes supporting the AMD
29116 chip. Because of the AMD 29116's extreme encoding, it
represents a "worse case" chip for the purposes of this
compiler study. Since the Syntax Compiler is so fast, we are
now free to consider various operational concepts for the
microcode development system. For example, we could predefine
the syntax in a separate run from the application program, or
we could recompile the syntax everytime we compile the
application program. Also, defining MACRO's in the
application program is not important when we can define them
in the syntax at so little cost in run time.

The results of the microcode compiler timing study were even
more surprising. For purposes of analysis, the run times were
displayed at various times during a run. The first time was
associated with the initial processing of the syntax files.
The other two times were associated with the two passes of

*." the microcompiler. The syntax file "set-up" time was found to
be constant and small. This time was found to be a function
of the maximum parameters of the program, and was insensitive
to syntax program size.

The function of the first phase of the compiler is to define
statement labels and to perform any required semantic
actions. These first-phase actions could be to generate
internal addresses or internal labels, and to perform
processing associated with the block program structures. The
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function of the second phase of the microcompiler is to
produce the object code.

We were expecting some non-linearities in run time resulting
from our use of hash tables, and other complex data
structures. We found no significant non-linear effects. The
times were almost strictly linear functions of the test case
size.

We were also expecting the microcompiler to run slower than
the state-of-the-art meta-assemblers. This expectation was
based on the complexity of the algorithms and on previous
computer run times for a similiar compiler. Our results show
that the microcompiler is about as fast as the
state-of-the-art meta-assemblers.

Comparing microcompilers in this manner is far from
scientific. For example, STEP Engineering, Inc. claims "2000
fields per minute" for their meta-assembler " on small
machines" and " over 10,000 fields per minute on larger
michines(i.e. VAX 11/750)." Without knowning their target
processor, or even what they consider a "small machine" it is
difficult to make a precise comparision. In any case, we
claim to be compiling over 2300 fields per minute on our
IBM/AT.
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3.0 Status of Accomplishments

During this research period, a full scale prototype was
specified, designed, and constructed. The purpose of this
prototype was to demonstrate the feasibilty of producing a

-- "retargetable microcode compiler. At the completion of the
feasibility study, a complete set of validated algorithms and
data structures were arrived at for all components of the
microcode generator.

3.1 Finalize Language Structure

A two-stage approach was adopted which used two compilers:
.*... the first compiler is used to define the application language

syntax, and the second compiler is used to compile the
application language and produce the micocode object file.
The syntax compiler language was finalized to the extent
necessary for the feasibilty study, while the application
languages were defined sufficiently to last into Phase III.

' •The results of this study indicate some possible areas of
improvement in the syntax definition language.

3.2 Insert MACRO Capability

Because of time constraints and in the interest of economy,
-. two existing compilers were modified to provide the

prototypes necessary for this study. One of the major
requirements, not satified by the existing compilers, was the
requirement to define MACRO's as part of the language
definition, and to expand these MACRO's during the
application language compilation. This capability was
successfully included in the feasibilty study microcode
compilers.

3.3 Optimize Syntax File Data Structures

The syntax compiler data structures were optimized in order
to facilitate the operation of the microcompiler. This
optimization consisted of the "inversion" of the data

- structures produced by the syntax compiler. This inversion
- "was accomplished with the result that the microcode compiler

runs much faster than it would otherwise. Without this
"inversion" the microcode compiler would be considered
computationally infeasible.

3.4 Generate Skeleton Compilers

- All of the software for the feasibilty study was coded and
tested. Spe-ifically, the two existing compilers were
modified to process the languages described above, to process
MACRO's defined during the syntax definition, and to use the
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optimized syntax file data structures for enhanced speed.

3.5 Perform Timing Study 4
In addition to the usual testing to eliminate programming
errors, the software was thoroughly characterized by a timir;
study. The focus of this study was to determine those test
case parameters which could be increased to cause the program
to fail through computational infeasibility.

3.6 Future Enhancements

Considerable progress has been made toward defining the
capabilities necessary for the next phase of this project.
Requirements have been generated for the modification of the
syntax definition language which will allow the use of a
wider range of semantic actions. The microcompiler will be
redesigned to reflect our new understanding of the
microcompiler as an engine for executing semantic actions.
The speed of the microcompiler is sufficient that it can be
"traded off" for complexity of the internal data structures,
which could result in the program being able to handle much
larger and more complicated problems.

4.0 Conclusions and Recommendations

4.1 Conclusions

A new and powerful approach to microcode development has been
investigated at PENGUIN Software, Inc. under the contract
DAADIO-86-C-0008 sponsored by White Sands Missile Range. This
approach has required the development of two prototype
compilers. The first compiler is used to design a
machine-dependent language for a particular target machine.
The definition of this language is contained in a syntax and
semantic definition file. This syntax file is inverted and
input to the microcompiler. The microcode compiler is used to
convert application program source code into object file
microcode.

4.1.1 Tasks Completed and Objectives Attained.

All proposed tasks have been completed and all technical
objectives have been attained resulting a demonstration of
the feasibilty of our proposed approach.

4.1.2 Low Risk Approach

After running several test cases during the software debug,
software validation, and timing study, we have gained
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~ .. considerable confidence not only in the correctness of the
software but also in the validity of our approach. This being
a new approach, it had several conjectured disadvantages. WeS have found that there are indeed no undeveloped algorithms
waiting to trip us up, and there appears to be a
straightforward way to proceed from here to a full up working
production-quality microcode development system.

4.1.3 High Speed

in the real world, program speed is certainly an important
issue. We were concerned that the microcode compiler would be
non-competitive with state-of-the-arrt microcode development
systems because of the added algorithm complexity. Our
approach involved using proprietary algorithms and data
structures developed here at PENGUIN SOFTWARE, Inc. over the

-. past five years. The result is that the microcompiler runs in
times more than competitive with existing meta-assemblers.

4.1.4 Graceful Degradation

All commercially successfull meta-assemblers have at least
* one capability in commnon: This is the ability to support any

machine that may be designed. Using the traditional approach,
this is not the case with microcode compilers. It is easy to
envision target machine designs that would render a
traditional microcode compiler useless. The complexity and

sensitivity of the resource allocation schemes and the
microcode compaction algorithms leave these compilers
extremely vulnerable to total failure. For example, no
resource allocation schemes have been even proposed which can
handle the extreme en~coding of the AI4D-29116.

with our approach, a situation involving total failure due to
target machine complexity is avoided. In the worst cases, the
high-level language supported will fail to meet user
expectations with respect to the level of the language. in

* this case the greatest concern has to do with how
successfully low level hardware design features can be
incorporated into a high level language. This is a small
issue compared to a case were the microcode compiler simply
no longer works.

4. 2 Recommendat ions

The following recommendations have been essentially presented
* in the Phase Il proposal. Below we are attempting to give

S. perhaps a little more insight into why these actions were
proposed.

4.2.1 Semantic Action Engine
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The original concept for the microcode compiler involved
thinking of the compiler as simply outputting field values to
be inserted into the microprogram object file. This works
well for an application language at the level of an assembly
language, but fails to attain what we usually think of as a
high-level language capability. As more high-level
capabilities are included it becomes necessary for the syntax
compiler to command different types of semantic actions and
equally necessary for the microcompiler to perform them. We
now think of the microcode compiler as an engine for
performing semantic actions rather than just in terms of
generating field values.

This shift in thinking results in some obvious changes in the
semantics data file being produced by the syntax compiler,
but the changes in the microcompiler are perhaps more
profound. With an assembly level language, the first pass of
our compiler just needed to determine statement labels and
addresses. In order to attain a high-level language
capabilty, we needed to completely compile each statement
during both the first and second passes. Since this
capability was not exercised in the original design, our
current prototype has a substantial amount of kludged
software. This software must be redesigned to reflect our new
understanding of the problem.

One of the advantages of this software redesign is that the
compiler will become extremely flexible with regard to which
semantic actions are possible. As new language structures are
envisioned, they can be easily incorporated into the new
design without a significant loss of reliability and without
sacrificing sound software engineering principles.

4.2.2 Intermediate Language

Once we have conceptually established the microcompiler as an
engine for performing semantic actions, then it becomes a
simple matter for the microcompiler to output strings of text
in response to an application language statement. In this
case, the text strings will be HALE meta-assmbly language
source code which will go into an intermediate language
output file. This simple approach allows full access to the
HILEVEL Technology microcode development system resources at
an extremely low cost.

4.2.3 Speed Becomes a Resource

The results of the timing study were somewhat suprising; the
microcode i .piler is much faster than expected. Speed now
becomes a resource which we can use in future design
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"trade-offs". one "trade-off", in particular, involves using
more complicated algorithms (which will reduce speed) in
order to increase the size of the problems that can be
handled by the microcompiler. This may allow us to use a more
natural approach to cascadeable microprocessors than might
otherwise be possible. Another "trade-off" might be made on
the operational level where the operator may choose to always
run the syntax compiler with the microcompiler, perhaps as a
preprocessor. A third possiblity is that we may eventually
incorporate a local code compaction algorithm in the
microcompiler. This would be used to improve the efficiency
of the microcode and would allow the use of less skilled
application programmers.
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A .0 SYNTAX CHARTS

Syntax charts are an easy way to communicate the structure of
a computer language. Aside from being mostly self
explanatory, they are a valuable programming tool. The

software design will consist to a large extent of attaching
semantic actions to the various paths in the syntax charts.

The coding phase consists of generating structured code to
reflect the required semantic actions.

An application program is defined by starting with a root

syntax chart and repeatly applying the other syntax charts as
required until all nonterminals are eliminated.

A2.0 SYNTAX CHART SYMBOL DEFINITIONS

1. Circles and ellipses contain terminals. These terminals
are sequences of symbols which appear as tokens in the
programs. Each program is written entirely in terms of these
terminal tokens.

2. Rectangles contain nonterminals. Each nonterminal is
identified by a name(in capital letters). This name
identifies the syntax chart which will define the
nonterminal.

3. Lines and arrows indicate the legitimate paths through the
charts. By following all possible paths along the lines in
the directions of the arrows, all possible legal statements

can be generated.

A3.0 SYNTAX CHART EXPRESSION DEFINITIONS

1. string: A string is a sequence of letters, and digits. A
string can also be a single special character. A string used
as a terminal usually refers to a token which will be defined
by the application programmer.

2. SINGLE QUOTES: Single quotes are used to enclose a
paticular string which must appear in the program at the
specified location.

3. A-string: An A-string is a string composed of letters and
digits which starts with a letter.

4. comment: An arbitruary string of characters which are
treated as white space.

5. white space: White space consists of blanks, tabs, and
comments. These have no semantic meaning other than to mark

I". A-I
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the end of a token or string. Although New Lines sometimes

have semantic meaning, they can also be used to generate
whLte space.

6. single letter: A special string consisting of one letter.

7. *** name: A name assigned to some data structure.

8. integer: A decimal integer unless specified otherwise.

9. HEX integer: A hexidecimal integer. .1

10. NL: A New Line is equivalent to a line feed, carriage

return inserted at the end of a line of text.

11. EOF: An End of File mark at the end of a computer file.

A4.0 APPLICATION PROGRAM SYNTAX CHARTS

I. PROGRAM(Fig. A.1): This is the application program root
syntax chart. It shows the basic structure of the application
program, and all of the pseudo-operations(pseudo-ops). Every

program will start with a 'WIDTH' pseudo-op to define the
microprogram word width, and every program will end with the
'END' pseudo-op. The other pseudo-op's and program sentences
are used as required by the particular application program.

2. SENTENCE(Fig. A-2): The sentence is the application
program statement which defines the microword. Each sentence

requires a period: this is the only required part of the .4
sentence. From the period to the end of the line defines the

comment. A sentence consisting of just a comment, and no
clauses will not advance the program counter. In other words,

it does not generate a microword of output just a comment in
the output listing.

In order to generate a micrword, the sentence must include at
least one clause. Each sentence can contain TBD clauses
separated by semicolons and with the last clause followed by

the period. A sentence containing at least one clause can be
labeled. This label is assigned the value of the program

counter associated with the sentence.

3. LABEL(Fig. A-3): The label is identified by an A-string

followed by a colon.

4. CLAUSE(Fig. A-4): The clause is an ordered sequence of

strings as defined in the syntax compiler. While the strings
within a clause are ordered, the clauses themselves can be in

any order.
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5. WIDTH(Fig. A-5): The 'WIDTH' of the microword is the
Vnumber of bits in the microword. This pseudo-op is required

and must be the first to appear in any application program.

6. END(Fig. A-6): The 'END' identifies the end of the
application program and is required.

7. ORIGIN(Fig. A-7): The 'ORIGIN' pseudo-op is used to set
the program counter to some desired location. This allows the

S programmer to control where the microcode will be located.

8. TITLE(Fig. A-8): The 'TITLE' pseudo-op is used to
determine the title to appear at the top of the output
listings. The title can be changed at any time and will
appear at the top of the suceeding listing pages.

9. SUBTITLE(Fig. A-9): The 'SUBTITLE' pseudo-op is similiar
to the 'TITLE' in that it generates a subtitle which appears
on the second line of each page.

' 10. RADIX(Fig. A-10): The 'RADIX' defines the operative
radix. Any number not having a specified radix will be

i. .interpreted with regard to the operative radix. The possible
radices are binary('BIN'), octal('OCT'), decimal('DEC'), and
hexidecimal('HEX').

11. DEFAULT(Fig. A-i): Bit locations in a microword which
are not specified by a clause will be assigned a default
value as defined by the 'DEFAULT' pseudo-op. This pseudo-op
requires a hexidecimal integer operand.

12. PAGE(Fig. A-12): The 'PAGE' pseudo-op is used to force a
page eject.

A5.0 SYNTAX DEFINITION PROGRAM SYNTAX CHARTS

1. SYNTAX-DEF(Fig. A-13): This is the root of the syntax
definition program. First, the microword is divided up into
fields which usually correspond to various functions and

-, resources to be controlled. The CLAUSE's, LIST's, and
.- * LITERAL's are used to define the application language.

Finally, the program is terminated when an End-of-File mark
is encountered.

During the phase I effort, the syntax compiler merely exists
to generate test cases for the microcompiler. As a
consequence, the syntax compiler was constructed with the
minimum of pseudo-op's and features.

2. FIELDS(Fig. A-14): The bits in the microword are numbered
from right to left and from one to n ( where n is the length

A-3
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of the microword). A microword is typically divided up into
contiguous bit fields corresponding to the various resources
to be controlled. 'FIELDS' starts the field definition and is
followed by left and right curley brackets which enclose the
field definitions.

3. FIELD-DEF(Fig. A-15): A field is defined by giving it a
name and specifying the bits in the field. In the case of a
one bit field, it is only necessary to specify the one bit.
For fields with more than one bit, then the number of the
left bit and the number of the right bit are specified.

4. FIELD-NAME(Fig. A-16): The field name consists of a single
letter followed by an integer.

5. LIT-STRING(Fig. A-17): The literal string (or series of
strings) is a string enclosed in double qoutes. This is used
to specify a particular string (or strings) that must always
appear in a given position of the clause.

6. CLAUSE(Fig. A-18): CLAUSE is followed by a definition of
the tokens in the clause and then possibly by some semantic
actions to be performed. There are four ways to define the
tokens appearing in the clause. They are by specifying:

a) a literal string(LIT-STRING).

b) a literal(LIT-NAME).

c) a list name(list-name).

d) a dimensioned list column(DLIST_COL).

7. LIT-NAME(Fig. A-19): A literal name consists of the word
LITERAL followed by an integer enclosed in parentheses.

8. DLIST-COL(Fig. A-20): A particular column in a dimensioned
list is identified by the list name followed by parentheses
containing the integer associated with the required column.

9. C-FIELD-VAL(Fig. A-21): C-FIELD-VAL is similiar to
L-FIELD-VAL with the addition of the LBL field command and
five commands to the microcompiler. The LBL command tells the
microcompiler to get the address associated with the
internally generated label for this instruction. This address
is then truncated or right justified and zero filled on the

* left as required for the specified field. The literal thus
obtained is rotated if necessary as specified by the integer
enclosed in the parentheses following the LBL command.

The microcompiler commands used to generate -the internally
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generated labels and addresses are as follows:

a) 'PPA' causes an address to be popped off the stack, and

causes a label to be generated. This address is then
associated with this new label.

b) 'PPL' causes a label to be popped off the stack, and
associated with the current microaddress.

c) 'PHA' causes the current microaddress to be pushed onto
the stack.

d) 'PHL' causes a label to be generated and pushed onto

the stack.

e) 'SWP' causes the top two entries in the stack to be
swapped.

10. LIST(Fig• A-22): The LIST pseudo-op is used to define
simple lists and dimensioned lists. Both lists consist of the

name of the list and a list definition. The dimensioned list

names are of the form defined in DLIST.

11. DLIST(Fig. A-23): The dimensioned list name is followed

by parentheses. These enclose integers associated with the

multiple columns(possibly one) in the dimensioned list.

12. LIST-DEF(Fig. A-24): A simple list definition is enclosed
in curley brackets. Each token in the list is followed by the

associated field values. The token and field value parts are

separated by semicolons.

13. L-FIELD-VAL(Fig. A-25): The field value definitions are

!L enclosed in square brackets. A field name is separated from

the HEX value to be inserted in that field by a back slash.

If more than one field value is to be inserted, then the

field name\value pairs are separated by semicolons.

14. DLIST-DEF(Fig. A-26): The dimensioned list consists of

columns of tokens (separated by commas) followed by the

4 associated field values. Multiple rows are separated by

semicolons.

* . 15. LITERAL(Fig. A-27): A literal definition consists of a

literal name and a formula for determining the fields and

values to be inserted.

16. LIT-VAL(Fig. A-28): The formula for determining the

* 'fields and values is enclosed in square brackets. A field

name is followed by a back slash and then by one of three

possible ways to define the value to be inserted into the

4
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specified field. These three ways are:

a) As in L-FIELD-VAL, a hex integer to be inserted into
the specified field.

b) A literal number (a constant or a value associated with
a label) is right justified and zero filled or truncated on
the left as required.

c) First a literal number is conditioned as above in b)
and then it is rotated by n bits to the right where n is the
integer enclosed in parentheses following ROR.
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Figure A-6. END.

Figure A-7. ORIGIN.
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S•FILENAME AMDSRC.MIN

THIS IS A TEST PROGRAM FOR THE MICRO COMPILER
BASED ON THE AMD PROGRAM

WIDTH 32
TITLE AMD ONE'S COUNTING PROGAM

q STITLE SEE PAGE 4-24 AM2900 FAMILY DATA BOOK
DEFAULT 02100000
ORIGIN 0

* INITIALIZE DATA REGISTERS

RO = 15.
R1 = 9.
R2 = 0.

* INITIALIZE BIT COUNTER AND TOTAL

CNTR = 4.
TOTAL = 0.

COUNT ONES

REPEAT.
IF(RI(SRA) IS ODD) CALL UPTOTAL.
IF(R2(SRA) IS ODD) CALL UPTOTAL.
IF(R2(SRA) IS ODD) CALL UPTOTAL.

S." UNTIL(DEC(CNTR) ZERO).

I . LOOP WHILE OUTPUTTING TOTAL

REPEAT.
OUTPUT TOTAL;

UNTIL(FOREVER).

ROUTINE INCREMENTS ONES COUNTER

UPTOTAL: ROUTINE;
INC(TOTAL);

RETURN.
END

iiB
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*filename AMDTEST.SRC
*This is a test file for the syntacts generator

* Set the word width to 32 bits
WIDTH 32

* Define the fields of the microword

FIELDS
X1(32,29) .Branch address
X2(28,25) .Next instruction
X3(24) . Mux 1
X4(23,21) . Destination Control
X5(20) .Mux 0
X6(19,17) .Source selection
X7(16) . Cn
X8(15,13) * ALU
X9(12,9) * A Source
X10(8,5) .B Source
Xll(4,1) * D Source

LIST IFCON(l,2)=
IFNOT,ZERO[X2\0];
IFNOT,OVEREX2\E];

IF, ZEROLX2\C];
IF,F3[X2\D];

I IF,C4[X2\F]

LIST MCS1=
CONT[X2\2j;
RETURN[X2\6];
PUSH[X2\9];
POP[X2\A]

LITERAL(1) =[Xl\LIT]

LIST MCS2=
ZERO[X2\8];
C4[EX2 \B)

LIST ABREGS(l)=
R0CX10\0;X9\0];

R2[X10\2;X9\2];
TOTAL[X10\3;X9\3];
CNTREX10\4;X9\4];
R5[XlO\5 ;X9\5];
R6[X10\6;X9\6);
R7EX10\7 ;X9\7];
R8EX10\8 ;X9\8];
R9EXl0\9;X9\9];
RIOCXIO\A;X9\AJ;
Rll[XlO\B;X9\B];

B-2
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R12[X10\c;x9\C];
R13[Xl0\D;X9\D];II. R14[X10\E;X9\E].
R15[Xl0\F;X9\F]

LIST BREGS(l)=
RO[Xl0\0];

R2CX10\2],

TOTAL[X10\3],

R7[Xl0\7];
R811X10\8];
R9[X10\9]7
R10[X10\A];
Rll[Xl0\B];
R12[X10\C];
R13[X10\D];
R14[Xl0\E];
R15[XlS\F]

LIST CREGS=
R0[X10\0;X9\0]rX10\0];
Rl[X10\l ;X9\1]CX10\1];
R2[Xl0\2 ;X9\2] [X10\2];
TOTALEX10\3;X9\3JEX10\3];
CNTR[X10\4;X9\4JEX10\4];
R5[X10\5;X9\5][X10\5];
R61X10\6;X9\6]$X10\6];
R7[X10\7;X9\7][X10\7];
R8[X10\8;X9\8][X10\8];

t R9IXl0\9;X9\9][XlS\9];

Rll[X10\B;X9\B][Xl0\B];
R12[X10\C;X9\CJEX10\C];

R14[X10\E;X9\E]EXl0\E];

R1C1\;9\IXOF
CLAUSE (BREGS(1) "=" LITERAL(2)I[X4\3;X6\7;X8\3]
LITERAL(2) = [X11\LIT]
LITERAL(3) = [][Xl\LIT]
CLAUSE (ABREGS(1) "AND" LITERAL(2)I[X6\5;X8\4]
CLAUSE (BREGS(1) "OR" LITERAL(2fl[X6\3,X8\3]
CLAUSE fBREGS(l) "=" BREGS(l) "4-@ "ONE"I[X4\3;X6\3;X7\1;X8\0]
CLAUSE ("INC(" BREGS(1) ")"1[X4\3;X6\3,-X7\1;X8\0]
CLAUSE fIFC--N(1) IFCON(2) "GOTO" LITERAL(1))
CLAUSE f MCb-.
CLAUSE i"GOSUB" LITERAL(l)I[X2\5]



CLAUSE ["CALL" LITERAL(1))[X2\5]
CLAUSE ["GOTO" LITERAL(1))[X2\1]
CLAUSE f"GOTO" 'SWITCH"I[X2\3]
CLAUSE {"GOTO" 'FILE"I[X2\7]
CLAUSE ["IFNOT" "ZERO" "GOSUB" LITERAL(1))EX2\4]
CLAUSE [ "IF" MCS2 "END" "LOOP" "AND" "POP")I
CLAUSE {BREGS(1) "=" BREGS(l) "-" "ONE"j[X4\3;-X6\3;X7\0;X8\1]

*CLAUSE ["DEC(" BREGS(l) ")"I[X4\3;X6\31-X7\0;-X8\1]
CLAUSE tBREGS(l) "=" "SRA" BREGS(1)ILX4\5;X6\3,-X8\3]
CLAUSE P"SRA(" BREGS(l) ")"I[X4\5;X6\3,X8\3]
CLAUSE (I"REPEAT"I[PHA]
CLAUSE ("UNTIL(FOREVER) "I[PPA;X2\1;X1\LBL]

-'CLAUSE ["ROUTINE"]
CLAUSE ["OUTPUT" BREGS(1))EX6\3;X8\3;Xll\0]
CLAUSE ["UNTIL(DEC("BREGS(1)")=ZERO)"I

[X4\3;X6\3;X7\0;X8\1][PPA;X2\0;Xl\LBL]
CLAUSE ["IF(" CREGS "(SRA) IS ODD)GOSUB' LITERAL(3)I

[X6\5,X8\4;Xll\l]EX2\4;X4\5;X6\3;X8\3]
CLAUSE ("IF(" CREGS "(SRA) IS ODD)CALL' LITERAL(3)I

[X6\5;X8\4;Xl1\1][X2\4;X4\5;X6\3;X8\3]
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C1.0 Design requirements

In addition to the syntax charts, certain other design
requirements were identified. The following requirements were
derived based on the initial interviews and based on the
designs of the compilers that were to be modified.

The reserved characters naturally fell into three categories:
reserved for the microcompiler; reserved for the syntax

*compiler; and not reserved. The microcompiler has the
following three reserved characters: the period ".", the
colon °:", and the semicolon ";". The syntax compiler has the
following five reserved characters: "[", ]", "\", #{ , 1o.
The remaining characters are not reserved and are available
to be included in the definition of the application language.

As it turned out, most parameters were used by both
compilers. These parameters were defined to be greater than
twice the size of the largest test case.

Parameter Parameter Parameter
Name Value Definition

MAXCOL 4 max cols in list
MAXLEN 20 max length of input string
MAXCLS 200 max clause definitions
MAXLIT 8 max literal definitions
MAXLST 90 max list definitions
MAXFLD 50 max fields
MAXSTR 400 max strings
MAXLNG 9 max token length + 1
MXTPC 10 max tokens per clause
MXCPS 10 max clauses per sentence
MAXLAB 1000 max labels
MAXWID 132 max microword width

AFPL 3 average fields per list
ARPL 8 average rows per list
ACPL 2 average columns per list
AFPT 2 average fields per literal
ATPC 5 average tokens per clause
AFPC 2 average fields per clause

STHSHSIZ 128 string hash table size

HASHSIZE 32 label hash table size

ii
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FILENAME: SYNMAN.PDL

This is the main driver for the syntacts generator.

main()

initialize for phase 1
synpar()

initialize for phase 2
synpar()
invert syntax tables
output data and listing

V
N%

1.

p%
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FILENAME: SYNPAR.PDL

This the parser for the syntacts generator.

synpar()

TOKEN = NEXT TOKEN
DO [

SWITCH(TOKEN) [
CASE FIELD: sfield()

BREAK
CASE CLAUSE: sclaus()

BREAK
CASE LIST: slist()

BREAK
CASE LITERAL: slit()

BREAK
CASE EOF: return

CASE PAGE: eject page
B REAK

default: report error
BREAK

} WHILE(FOREVER)

It
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FILENAME: SFIELD.PDL

q This function handles all field definitions.

sfield()

token = next token

if(token ne T[,)[
report error
return

token = next token
if(token is not a letter)[

report error
return

field letter = token
do f -

if(phase =) 1
: "if(too many fields)

report error
return

token = next token

if(token is not a number)
report error
return

if(phase = 1)
field number = token
if(field already defined)

report error
Sreturn

token = next token
if(token ne (')

report error
return

token = next token
if(token is not a number)

report error
return

if(phase = 1) field start=token
token = next token
if(token ne

if(token ne
report error

-'Ii
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return

field-stop field-start

else
token = next token
if(token is not a number)

report error
return

if(phase = 1) fieldstop=token
token = next token

if(token ne
report error
return

}
if(phase = 1)

if(field too big)
report error
returnJI

if(field reversed) .4
report error
return

fieldlet[fortot] = fieldletter
field num[fortot] = field number
field-strt[fortot] = field start
field-stp[fortot++] = field stop

token = next token
if(token is a letter) field letter = token

- while(token is a letter)
if(token ne 'P) [

report error
return

token = next token
return

5 h1
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FILENAME: SCLAUS.PDL

*This function handles all clause definitions.

clause()

errstr=FALSE
IF(phase = 2) 1

IF(too many clauses) I
report error

*,. return

initialize clspnt(temporary clause definition pointer)
initialize cfpntr(clause fields definition pointer}

token = next token
IF(token ne )I

report error
return

q token = next token
IF(token ' ') I

* .report error
return

DO
SWITCH(toktype)
CASE LITERAL:(

token = next token
IF(token ne T(,)

report error
return

token = next token
IF(token ne number) I

report error
.~- return

IF(phase = 2) 1
7 IF(literal undefined) I

report error
return

clspnt = clspnt + 1
cls def[clspnt]=-(literal number)-i
clspnt = clspnt + 1
cls def[clspnt++]=-i

token = next token
IF(token ne T),)

b report error

--
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return}
token = next token
SWITCH(tokenT f
CASE LITERAL: BREAK
CASE STRING: BREAK
CASE QOUTES: BREAK
CASE '}': BREAK
DEFAULT: report error

return}
BREAK

CASE STRING:
IF(phase = 2)

tmpstr = token
decnum=0

token = next token
SWITCH(tokenT
CASE '(: [

SCtoken = next token
IF(token ne number)

report error
returnI

ELSE
IF(phase = 2)

decnum = token
IF(decnum<=0)

report error
return

token = next token
IF(token ne

2report error
return

token = next token
BREAK

CASE LITERAL: BREAK
CASE STRING: BREAK
CASE QOUTES: BREAK
CASE '1 : BREAK

DEFAULT: report error
return

IF(phase = 2) 1



IF(list undefined)
report error
return

clspnt = clspnt + I

cls def[clspnt]=list number-MAXLST-MAXLIT-1

clspnt = clspnt + 1
cls def[clspnt]=decnum

BREAK

CASE QOUTES:
* . token = next token

IF(token==QOTTK)
report error
return

while(toktype ne )

IF(phase = 2)

clspnt = clspnt + 1
cls def[clspnt]=string number
clspnt = clspnt + 1
cls def[clspnt]=-i

token next-token

token = next token

SWITCH(tokenT
CASE LITERAL: BREAK
CASE STRING: BREAK
CASE QOUTES: BREAK
CASE }: BREAK
DEFAULT: report error

return

BREAK

DEFAULT:
report error
return

" WHILE(toktype ne '1')

token = next token
SWITCH(tokenT I
CASE PAGE: BREAK
CASE EOF: BREAK
CASE FIELDS: BREAK
CASE CLAUSE: BREAK

- . CASE LIST: BREAK
CASE LITERAL: BREAK

p~V.

'V V KJ- '%r ' *



CASE [
IF(phase =2) cfield(TRUE)
ELSE cfield(FALSE)
B REAK

DEFAULi>
report error
return

IF(phase =2)
update cdpntr =clspnt-I
update cistot =cistot + 1

return

I7



FILENAME: SLIST.PDL

This function handles all list definitions.

slist()

IF(phaseno==l) {
IF(too many lists)

report error
returnI

}
token = next token
IF(token is not a string)

report error
return

IF(phase = 1)
IF(list already defined)

* report error
return

define list
initialize lpnt(temporary pointer into istaray)
initialize lstdp(pointer into list def)
initialize lstfdp(pointer into lstfpp)
initialize itemp(temporary list dimension counter)

token = next token

IF(token 'T')
do

token = next token
IF(token is not a number)

report error
return

IF(phase = 1)
itemp = itemp + 1
lstaray[lpnt] = lstaray[lpnt] + 1

lstaray[lpnt+itemp] = token

token = next token
while(token =,1)

IF(toktype ne
report error
return

token = next token

IF(phase = 1)
IF((listdim=lstaray[lpnt]) = 0) listdim = listdim + 1

W 0 .
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lstpnt[ lstnum]=lpnt+itemp

IF(toktype ne 11

report error
return

token = next token

IF~tne ' n)
report error
return

do
colcnt=0

do
* token =next token

IF(token is not a string)
report error
return

IF(phase=1)i
IF(colcnt<MAXCOL) I

* lstdtmp~colcnt] string number of token
colcnt = colent + 1

ELSE
report error
return

token =next token
Iwhile(token =11

IF(toktype ne ''
report error
retur

IF(phase 1
IF(colcnt ne listdim)

report error
return

lstdp[ lstnum]=lstdp[ lstnum]+listdin
move data to list def from lstdtmp
initialize lstfpp~pointer into lswfdp)
lfield(TRUE)

ELSE
lfield(FALSE)

while(toktype =I'

IF(toktype ne1)
report error

A.7
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return

token =next-token

return
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FILENAME: SLIT.PDL

This function handles the definition of all literals.

slit()

token = next token
IF(token ne '(') (

report error
returnI

token = next token
IF(token is not a number)

report error
returnI

IF(phase = 1) numlit = token
token = next token
IF(token ne T),) [

report error
returnI

IF(phase 1)
IF(literal is already defined)

report error
return

IF(too many literals)
report error
return

define literalI
token = next token
IF(token nem=,)

report error
returnI

token = next token
IF(token ne T[,)

report error
return}

initialize ldpntr[littot]
initialize ltdftot = ltwpntr[ldpntr[littot]]
do

do
token = next token

IF(token s not a letter)
IF(token ne

report error

D-1?
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ret urn

U ELSE
token = next token

-F(token is not a number)
report error
return

IF(phase = 1)
IF( eeld i.s undefined)

report error
return

token = next token
IF(token ne T

report error
return

token = next token

IF(token is a HEX number)
IF(phase = I)

ltdftot++
lit def[Itdftot++]=field number
litdef[ltdftot]= hex number

token = next token

ELSE
IF(token = LTTTK)

IF(phase = 1)
* ltdf#tot++

lit def[.ltdf* ot++]=-numfor-I
lit _del td ftot =0

token = next token

ELSE
- -: - IF(token = ROR)
-' .- token = next token

IF(token ne
report error
return

token = next token

IF(token ne number)
report error
return

"' " - IF(phase = 1) ltlnum=atoi(token)

-
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IF€ .ase

upd at t

} while(token=

IF( token ne ' ) { i
report errzr

retrrn

}%

LF'(phase = ) [
update 1.Jnntr[ ilttutt

update ltwpntr[ ] ipntr[ t = 1 f t"

token = next token
}while(token = 7

IF(phase = 1) littot - littot
return

i 2
, ..

I



1% Th.is ~ :r~t I d: e s I1 .

:Vs ret

'A* S

K e. X

"AS F A r
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tok~er rex K*

*rrepo t~i err, rF

f eI se t~rit

report err',r
ret rr.

tokn = n~exttkr
IF(toeri rsno etre

report errrr
ret urn

token =next token,

IF~token 7



F~toe:.a HEX rnumber)
mnum token
token =next-token.p~1 ESl(token se not a label)

r etu rnr

ELSE]
inform =-inform-i

Inr"urE =

token = next token
lF(tokeri=

token =next token
IF(token rne niumber)

report error
return

inum =token

token next tokeni
I.V(token ne T~

report error
returni

token =next token

P R E A K

JASE ]

storef =AS

liPEAF

LEFAULT: repo-rt error

ret )r ef

ftot ftot + I
cls fl I Jefr ftot] inform
ftot = ftot +

%~ci f1 l jf f tot] nmm

WHILE( token=
F~(token ne 'J

report error

r et o r n

fpnitr[clstotl = cfp-ntr[clstotj +I

:wpntr[cfpnitr[clstotfl =ftot



to~ken =next token
IWHILE(token LSL3TK)

ret Urn

ale



ENAE EL 1 1

"'his funictior. handles all list field definitions.

i fiel i ( s tor e f

liFistoref)
i terrp 1.5 fpp[ Istfdp[Is ttot-l]
initialize lswfdp[itemnp+l] = lswfdPLitemp]

initialize ftot = lswfdip[itemp+1]

token =next token
IF(token is niot a letter)

IF(token, ne ''
report error
return

token =next token
IF(token is not a number)

report error
return

IF(storef)
IF(field is undefined)

report error
return

token = next t oke n
IFltoken tie

report error
ret urn

token = next t ok enr

IF(token is niot a HEX numnber)[
report error
ret urn

1I(storef)
f tot = f tot +
IS t f id def[if toti
f tot = ftot + I
1st f Ild -def[ f tot J t token

token = next token

IWHII,E(token =

S.,



IF(token ne
report error

return

IF(Storef)
I = ++Istfpp[lstfcdp[isttot-1]]
lswfdp[i] = fiot

token = next token
IWHILE(token **
return

4-



FILENAME: MAIN.PDL

This is the main driver for the microcode compiler.

m~ain(

lodtab()
initialize for phase 1
parse(
initialize for phase 2
par seo
ex-ito

ILAt



FILENAME: LODTAB.PDL

U !This function loads the syntax tables.

lodtab()

cdpntr = clause definition pointer
cdef = clause definition array
lsttot = total number of lists
lstpnt = istaray pointer
Istaray = (#dims,dim#,dlm#,...,dim#)

istdp = ldefp pointer
idefp = array of strings in lists
cfpntr = cwpntr pointer
cwpntr = cfld pointer
cfld = array of fields for clauses
littot = total number of literal defs
litdp = Itwpntr pointer
Itwpntr = litdef pointer
litdef = array of fields for literals
istfdp = istffp pointer
Istffp = lfld pointer
lfld = array of fields by list row
fortot = total number of formats
format definitions
string symbol tables
12cp = list to clause pointer
12c list to clause array
s2cp = string to clause pointer
s2c string to clause array
s2lp = string to list pointer
s21 string to list array
clstot = total number of clauses
return

l--2
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FILENAME: PARSE.PDL

This the parser for the microcode compiler.

parse()

token = next token
DO{
SWITCH(token)
CASE STRING: psent()

BREAK "
CASE NUMBER: psent()

BREAK
CASE NEWLINE: BREAK
CASE EOF: report error

return
CASE LABEL: insert token into label symbol table

BREAK
CASE END: return
CASE TITLE: format title

BREAK
CASE SUBTITLE: format subtitle

BREAK
CASE RADIX: store default radix

BREAK
CASE ORIGIN: set new maddr(micro address)

BREAK
CASE DEFAULT: store new dault microword

BREAK
CASE WIDTH: process word width

BREAK
CASE PAGE: eject page

BREAK
CASE PERIOD: skip rest of line

BREAK
default: report error

BREAK

I WHILE(FOREVER)

4,,
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FILENAME: PSENT.PDL

This function processes the sentences

psent()

set microwords to default
set all clause field(clfld) to empty
psorn()
DOf
token = next token
SWITCH(token7
CASE STRING: psorn()

BREAK
CASE NUMBER: psorn()

BREAK
CASE CLAUSE: IF(clause empty) report error

fldctr =0
clsctr =clsctr + I
B REAK

CASE PERIOD: IF(clause emp.y) report error
it fldctr = 0

clsctr = clsctr + 1
B REAK

*default: report error
BREAK

IWHILE((token ne '.')&&(not too many clauses or fields))
IF(error in clause) report error
ELSE psnt()
IF(phasel) maddr =maddr + wrdtot
ret u rni



FILENAME: PSORN.PDL

This funionL3U processes stig n ubr

psorn()

clstok~clsctr,fldctr] token
IF(token is a number)

clfld~clsctr][fldctr] =-1
clvalflclsctr][fldctr] = token

ELSE
IF(string is defined)

clfld[clsctr][fldctr] string number

ELSE
IF(phase = 1)

define label

clfld[clsctr][fldctr] = -1
cLvaLCcLsctr2[fldctr] = label number

ELS
ESIF(string is a label)

clfld[clsctr]Lfldctr] = -1
clval~clsctr]Efldctr] = label number

ELSEf
clfld[clsctr]Efldctr] -2
report error

fldctr =fldctr + 1
return



* FILENAME: PSNT.PDL

p This function generates the object code.

psnto(

* FOR(clsno = 0;clsno<clsctr;clsno++)
numcol =0

FOR(i = 0;i<clstot;i++) posclsjiil=TRUE
FOR(f = 0;(f<MXFPC)&&(clfld[clsno][f]!=-3);f++)

pclsl (f)
FOR(i = 0;i<clstot;i++)

poscls[i] = poscls[i]&&clspos[i]
numcol++

FOR(i = 0;i<clstot;i++)
jstr -
if(i>0) jstr = cdpntr[i-l
if(fI=((cdpntr[i]-jstr)/2)) poscis~i] =FALSE

totok = 0
FOR(clsn = 0;clsn<clstot;clsn++)

if(poscls~clsn]) pcls2(clsn,numcol)

FOR(h = 0~h<MXWPS;h++)
FOR(i = ;i<numints;i++)

clsrnask[h][clsno][i] = 0
clsword[h][clsnoj[i] = 0

switch(totok)
case 0: report too few possible clauses

break
*case 1: build object code for the clause

break
default: report too many possible clauses

break

7 build the object for the word
return
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